

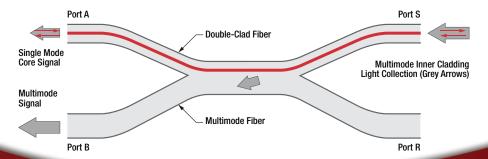
Double-Clad Fiber Coupler, 1300 nm, No Connectors

DC1300LEB

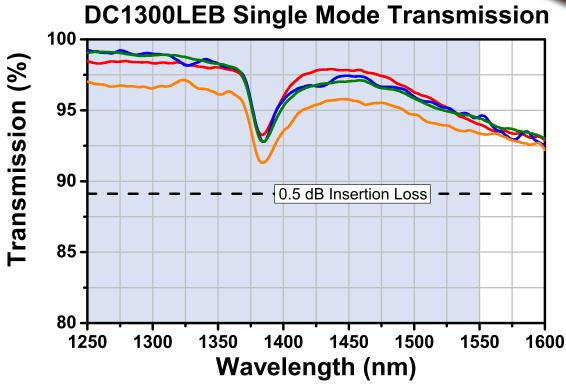
Description

Thorlabs' DC1300LEB double-clad, 2x2 fiber coupler, designed and manufactured in collaboration with strategic partner Castor Optics, combines a double-clad fiber (single mode core surrounded by a multimode inner cladding) with a standard step-index multimode fiber. Light in the single mode core of the double-clad fiber (DCF) is guided through the coupler with virtually no loss (≤ 0.5 dB). Light in the multimode inner cladding of the DCF is transferred to the output leg of the multimode fiber with $\ge 60\%$ transmission. This coupler provides a robust alternative to free-space assemblies when incorporating multiple imaging and sensing modalities. It is, for example, ideally suited to combine optical coherence tomography (OCT) with fluorescence imaging or spectroscopy, or to perform speckle-free imaging.

Specifications


DC1300LEB Specifications		
Wavelength Range	1250 - 1550 nm	
Single Mode Core Insertion Loss ^a	≤0.5 dB	
Multimode Inner Cladding Transfer ^b	≥60%	
Port Configuration	2x2	
Fiber Lead Length and Tolerance ^c	1 m +0.075 m/-0.0 m	
Connectors ^c	Unterminated, Scissor Cut	
Package Size	Ø0.12" x 3.15" (Ø3.2 mm x 80 mm)	
Jacket	Ø900 µm Hytrel® Loose Tube	
Pigtail Tensile Load	10 N	
Operating Temperature Range	-40 to 85 °C	
Storage Temperature Range	-40 to 85 °C	

- Measured over the wavelength range from Port A to the core of Port S, as defined below.
 Performance from Port S to Port A will be similar.
- b. Measured from the inner cladding of Port S to Port B, as defined below.
- c. Additional lead lengths and connector options available on request. Please contact techsupport@thorlabs.com with inquiries.


Fiber Specifications		
Fiber Type	Double-Clad Fiber	Multimode Fiber
Core Diameter (Nominal)	9 μm	200 μm
Core NA	0.12	0.22
Cut-Off Wavelength	≤1250 nm	-
Inner Cladding Diameter	105 μm	-
Inner Cladding NA	0.2	-
Outer Cladding Diameter	125 um	220 um

Single Mode Core Light Collection and Illumination (Red Arrows)

Typical Performance Plots

This persistence plot shows the single-mode transmission of four DC1300LEB couplers. The blue-shaded region denotes the coupler's full operating wavelength range; performance outside of this region is not guaranteed. The spectral feature centered at 1383 nm is a water absorption line. All data was measured without connectors. Multimode transmission from port S to port B (not shown) is flat and $\geq 60\%$ across the whole band.

Drawing

All Ports are Unterminated (Scissor Cut).

Us, Canada, & South America: +1-973-300-3000 | France: +33 (0) 970 444 844 | Europe: +49 (0) 8131-5956-0 | UK & Ireland: +86 (0)21-60561122

Brazil: +55-16-3413 7062 | Scandinavia: +46-31-733-30-00 | Japan & Asia: +81-3-5979-8889 | China: +86 (0)21-60561122

April 30, 2015

TTN035962-S01, Rev B